Automate Your Forex Trading with n8n: A Beginner’s Guide to Workflow Automation

Introduction

Forex trading can be fast-paced and demanding, requiring constant monitoring of market conditions. For beginners looking to streamline their trading operations, n8n offers a powerful solution. n8n is an open-source workflow automation tool that lets you connect different services and automate repetitive tasks without writing complex code. In this guide, you’ll learn how to automate your Forex trading workflows using n8n combined with Python scripts.

What is n8n?

n8n is a fair-code licensed workflow automation platform that allows you to connect various apps and services together. Think of it as a visual programming tool where you can create workflows by connecting “nodes” that represent different actions or triggers. For Forex traders, this means you can:

• Monitor market data automatically
• Execute trades based on predefined conditions
• Send notifications when trading opportunities arise
• Log trading activities and performance metrics

Setting Up Your First n8n Forex Workflow

Before diving into automation, you need to set up n8n. You can run it locally using Docker or deploy it on a cloud server. Once installed, you can access the n8n interface through your web browser.

Step 1: Fetching Forex Market Data

The first step in any automated trading workflow is gathering market data. You can use APIs like Alpha Vantage, OANDA, or FXCM to fetch real-time Forex prices. Here’s a Python script that fetches EUR/USD exchange rates:

import requests
import json

def fetch_forex_data(api_key, from_currency='EUR', to_currency='USD'):
    """
    Fetch real-time Forex exchange rates using Alpha Vantage API
    """
    base_url = 'https://www.alphavantage.co/query'
    
    params = {
        'function': 'CURRENCY_EXCHANGE_RATE',
        'from_currency': from_currency,
        'to_currency': to_currency,
        'apikey': api_key
    }
    
    try:
        response = requests.get(base_url, params=params)
        data = response.json()
        
        exchange_rate = data['Realtime Currency Exchange Rate']
        current_price = float(exchange_rate['5. Exchange Rate'])
        
        print(f"{from_currency}/{to_currency}: {current_price}")
        return current_price
        
    except Exception as e:
        print(f"Error fetching data: {e}")
        return None

# Example usage
api_key = 'YOUR_API_KEY_HERE'
price = fetch_forex_data(api_key)

Step 2: Creating Trading Signals with Python

Once you have market data, the next step is generating trading signals. Here’s a simple moving average crossover strategy implemented in Python:

import pandas as pd
import numpy as np

def calculate_trading_signal(prices, short_window=5, long_window=20):
    """
    Generate trading signals based on moving average crossover
    """
    df = pd.DataFrame({'price': prices})
    
    # Calculate moving averages
    df['short_ma'] = df['price'].rolling(window=short_window).mean()
    df['long_ma'] = df['price'].rolling(window=long_window).mean()
    
    # Generate signals
    df['signal'] = 0
    df['signal'][short_window:] = np.where(
        df['short_ma'][short_window:] > df['long_ma'][short_window:], 1, -1
    )
    
    # Detect crossover
    df['position'] = df['signal'].diff()
    
    current_signal = df['signal'].iloc[-1]
    
    if current_signal == 1:
        return "BUY"
    elif current_signal == -1:
        return "SELL"
    else:
        return "HOLD"

# Example usage
historical_prices = [1.1850, 1.1865, 1.1880, 1.1870, 1.1890, 1.1905]
signal = calculate_trading_signal(historical_prices)
print(f"Trading Signal: {signal}")

Step 3: Integrating Python with n8n

In n8n, you can execute Python scripts using the “Execute Command” node or by setting up a webhook that calls your Python service. The workflow typically looks like this:

1. Cron Trigger: Schedule the workflow to run every 5 minutes
2. HTTP Request Node: Fetch Forex data from your API
3. Function Node: Process data and calculate signals using JavaScript (or call Python script)
4. Conditional Node: Check if signal is BUY or SELL
5. Notification Node: Send alerts via Telegram, Slack, or email

Best Practices for Beginners

Start Small: Begin with paper trading to test your automation without risking real money
Monitor Your Workflows: Always log your automated actions and review them regularly
Use Error Handling: Implement try-catch blocks to prevent workflow failures
Secure Your API Keys: Store sensitive credentials using n8n’s credential system
Backtest Your Strategies: Validate your trading logic with historical data before going live

Conclusion

Automating Forex trading with n8n opens up new possibilities for traders at all levels. By combining n8n’s visual workflow builder with Python’s powerful data processing capabilities, you can create sophisticated trading systems that run 24/7. Remember that successful trading requires continuous learning, proper risk management, and regular strategy optimization.

Start experimenting with simple workflows today, and gradually build more complex automation as you gain confidence. The key is to remain patient and disciplined while letting automation handle the repetitive tasks, freeing you to focus on strategy development and market analysis.

Creating a Multi-Currency Portfolio Dashboard with Python and Streamlit

Introduction

Managing a multi-currency Forex portfolio can be overwhelming without proper visualization tools. Manually tracking positions, calculating P&L across different currency pairs, and monitoring real-time performance is not just tedious—it’s error-prone. In this comprehensive tutorial, we’ll build a professional, interactive web dashboard using Python and Streamlit that displays your Forex portfolio in real-time, powered by Alibaba Cloud’s enterprise-grade infrastructure.

Why Build a Portfolio Dashboard?

A well-designed dashboard transforms raw trading data into actionable insights:

Real-time visibility into all your open positions across currency pairs
Instant P&L calculations with automatic currency conversions
Performance metrics including win rate, risk-reward ratios, and drawdowns
Historical analysis with interactive charts and trend visualization
Risk management through position sizing and exposure tracking

Architecture: Leveraging Alibaba Cloud

Our dashboard uses a modern cloud-native architecture with three key Alibaba Cloud services:

1. OSS (Object Storage Service) – Stores historical trade data, portfolio snapshots, and backups
2. Tair (Redis) – Provides lightning-fast caching for real-time price feeds and portfolio calculations
3. AnalyticDB for MySQL – Powers complex analytics and historical queries on large datasets

This architecture ensures your dashboard can handle real-time updates, scale with your trading volume, and maintain sub-second response times.

Prerequisites

Before we begin, ensure you have:

• Python 3.8+ installed
• Alibaba Cloud account with OSS, Tair, and AnalyticDB enabled
• Basic understanding of Forex trading concepts
• Familiarity with pandas and data visualization

Step 1: Installing Required Libraries

First, let’s install the necessary Python packages:

# Install core dashboard libraries
pip install streamlit pandas plotly

# Install data processing libraries
pip install numpy yfinance requests

# Install Alibaba Cloud SDKs
pip install oss2 redis pymysql

Step 2: Setting Up Data Storage with Alibaba Cloud OSS

Let’s create a module to handle persistent storage of portfolio data using OSS:

import oss2
import json
from datetime import datetime

class PortfolioStorage:
    def __init__(self, access_key_id, access_key_secret, endpoint, bucket_name):
        """
        Initialize connection to Alibaba Cloud OSS
        """
        auth = oss2.Auth(access_key_id, access_key_secret)
        self.bucket = oss2.Bucket(auth, endpoint, bucket_name)
    
    def save_portfolio(self, portfolio_data):
        """
        Save portfolio snapshot to OSS
        """
        timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
        key = f"portfolios/snapshot_{timestamp}.json"
        
        data_json = json.dumps(portfolio_data, indent=2)
        self.bucket.put_object(key, data_json)
        
        print(f"Portfolio saved to OSS: {key}")
        return key
    
    def load_latest_portfolio(self):
        """
        Load the most recent portfolio snapshot
        """
        # List all portfolio files
        files = []
        for obj in oss2.ObjectIterator(self.bucket, prefix='portfolios/'):
            files.append(obj.key)
        
        if not files:
            return None
        
        # Get the latest file
        latest_file = sorted(files)[-1]
        content = self.bucket.get_object(latest_file).read()
        
        return json.loads(content)
    
    def get_historical_portfolios(self, days=30):
        """
        Retrieve historical portfolio snapshots
        """
        portfolios = []
        for obj in oss2.ObjectIterator(self.bucket, prefix='portfolios/'):
            content = self.bucket.get_object(obj.key).read()
            data = json.loads(content)
            portfolios.append(data)
        
        return portfolios[-days:]  # Return last N days

Step 3: Implementing Real-Time Caching with Tair (Redis)

Tair provides ultra-fast caching for live price data:

import redis
import json
from datetime import datetime, timedelta

class PriceCache:
    def __init__(self, host, port, password, db=0):
        """
        Connect to Alibaba Cloud Tair (Redis)
        """
        self.redis_client = redis.Redis(
            host=host,
            port=port,
            password=password,
            db=db,
            decode_responses=True
        )
    
    def cache_price(self, currency_pair, price, ttl=60):
        """
        Cache current price with TTL (Time To Live)
        """
        key = f"price:{currency_pair}"
        data = {
            'price': price,
            'timestamp': datetime.now().isoformat(),
            'pair': currency_pair
        }
        
        self.redis_client.setex(
            key,
            ttl,
            json.dumps(data)
        )
    
    def get_cached_price(self, currency_pair):
        """
        Retrieve cached price
        """
        key = f"price:{currency_pair}"
        data = self.redis_client.get(key)
        
        if data:
            return json.loads(data)
        return None
    
    def cache_portfolio_metrics(self, metrics, ttl=300):
        """
        Cache calculated portfolio metrics
        """
        key = "portfolio:metrics"
        self.redis_client.setex(
            key,
            ttl,
            json.dumps(metrics)
        )
    
    def get_portfolio_metrics(self):
        """
        Get cached portfolio metrics
        """
        data = self.redis_client.get("portfolio:metrics")
        if data:
            return json.loads(data)
        return None

Step 4: Building the Streamlit Dashboard

Now let’s create the main dashboard application:

import streamlit as st
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
from datetime import datetime

# Configure Streamlit page
st.set_page_config(
    page_title="Forex Portfolio Dashboard",
    page_icon="💹",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Initialize connections (credentials from secrets)
@st.cache_resource
def init_connections():
    storage = PortfolioStorage(
        access_key_id=st.secrets["oss"]["access_key_id"],
        access_key_secret=st.secrets["oss"]["access_key_secret"],
        endpoint=st.secrets["oss"]["endpoint"],
        bucket_name=st.secrets["oss"]["bucket"]
    )
    
    cache = PriceCache(
        host=st.secrets["tair"]["host"],
        port=st.secrets["tair"]["port"],
        password=st.secrets["tair"]["password"]
    )
    
    return storage, cache

storage, cache = init_connections()

# Dashboard Header
st.title("💹 Multi-Currency Forex Portfolio Dashboard")
st.markdown("Real-time tracking powered by Alibaba Cloud")

# Sidebar - Portfolio Controls
with st.sidebar:
    st.header("Portfolio Controls")
    
    # Refresh button
    if st.button("🔄 Refresh Data"):
        st.cache_data.clear()
        st.rerun()
    
    # Currency pair selector
    currency_pairs = st.multiselect(
        "Active Currency Pairs",
        ["EUR/USD", "GBP/USD", "USD/JPY", "AUD/USD", "USD/CAD"],
        default=["EUR/USD", "GBP/USD"]
    )
    
    # Time range selector
    time_range = st.selectbox(
        "Time Range",
        ["Today", "This Week", "This Month", "All Time"]
    )

# Main Dashboard Layout
col1, col2, col3, col4 = st.columns(4)

# Key Metrics Display
with col1:
    st.metric(
        label="Total Portfolio Value",
        value="$125,430",
        delta="$2,340"
    )

with col2:
    st.metric(
        label="Today's P&L",
        value="$1,234",
        delta="1.87%"
    )

with col3:
    st.metric(
        label="Open Positions",
        value="8",
        delta="+2"
    )

with col4:
    st.metric(
        label="Win Rate",
        value="64.3%",
        delta="2.1%"
    )

# Portfolio Composition Chart
st.subheader("Portfolio Composition")

# Sample data for demonstration
portfolio_data = pd.DataFrame({
    'Pair': ['EUR/USD', 'GBP/USD', 'USD/JPY', 'AUD/USD'],
    'Value': [45000, 32000, 28000, 20000],
    'P&L': [2340, -450, 1200, 500]
})

fig_pie = px.pie(
    portfolio_data,
    values='Value',
    names='Pair',
    title='Asset Allocation'
)
st.plotly_chart(fig_pie, use_container_width=True)

# Position Details Table
st.subheader("Open Positions")

positions_df = pd.DataFrame({
    'Pair': ['EUR/USD', 'GBP/USD', 'USD/JPY'],
    'Direction': ['Long', 'Short', 'Long'],
    'Entry Price': [1.0850, 1.2630, 149.20],
    'Current Price': [1.0920, 1.2610, 150.10],
    'Position Size': [10000, 8000, 5000],
    'P&L': ['$700', '-$160', '$450']
})

st.dataframe(positions_df, use_container_width=True)

# Performance Chart
st.subheader("Portfolio Performance Over Time")

# Generate sample time series data
dates = pd.date_range(end=datetime.now(), periods=30, freq='D')
values = pd.Series([120000 + i*180 + (i%5)*300 for i in range(30)])

fig_line = go.Figure()
fig_line.add_trace(go.Scatter(
    x=dates,
    y=values,
    mode='lines',
    name='Portfolio Value',
    line=dict(color='#00D9FF', width=2)
))

fig_line.update_layout(
    title='30-Day Portfolio Performance',
    xaxis_title='Date',
    yaxis_title='Portfolio Value (USD)',
    hovermode='x unified'
)

st.plotly_chart(fig_line, use_container_width=True)

Step 5: Integrating AnalyticDB for Historical Analysis

Use AnalyticDB to query large historical datasets:

import pymysql

class AnalyticsDB:
    def __init__(self, host, port, user, password, database):
        """
        Connect to Alibaba Cloud AnalyticDB
        """
        self.connection = pymysql.connect(
            host=host,
            port=port,
            user=user,
            password=password,
            database=database
        )
    
    def get_trade_history(self, days=30):
        """
        Query historical trades
        """
        query = f"""
        SELECT 
            trade_date,
            currency_pair,
            direction,
            entry_price,
            exit_price,
            profit_loss,
            duration_hours
        FROM trades
        WHERE trade_date >= DATE_SUB(CURDATE(), INTERVAL {days} DAY)
        ORDER BY trade_date DESC
        """
        
        return pd.read_sql(query, self.connection)
    
    def calculate_performance_metrics(self):
        """
        Calculate comprehensive performance statistics
        """
        query = """
        SELECT 
            COUNT(*) as total_trades,
            SUM(CASE WHEN profit_loss > 0 THEN 1 ELSE 0 END) as winning_trades,
            AVG(profit_loss) as avg_pnl,
            MAX(profit_loss) as best_trade,
            MIN(profit_loss) as worst_trade,
            STDDEV(profit_loss) as volatility
        FROM trades
        WHERE trade_date >= DATE_SUB(CURDATE(), INTERVAL 90 DAY)
        """
        
        return pd.read_sql(query, self.connection).to_dict('records')[0]

Deploying to Alibaba Cloud

To deploy your dashboard:

1. Create an ECS instance or use Serverless App Engine
2. Install dependencies: `pip install -r requirements.txt`
3. Configure secrets: Store API keys securely in environment variables
4. Run the app: `streamlit run dashboard.py –server.port 8501`
5. Set up HTTPS: Use Alibaba Cloud CDN or SLB for SSL termination

Advanced Features to Implement

Live Price Feeds: Integrate WebSocket connections for tick-by-tick updates
Risk Alerts: Trigger notifications when drawdown exceeds thresholds
Correlation Matrix: Visualize relationships between currency pairs
Trade Journal: Add notes and tags to each position
Performance Attribution: Break down returns by strategy and time period

Cost Optimization

Running on Alibaba Cloud is cost-effective:

OSS: Pay only for storage used (~$0.02/GB/month)
Tair: Basic instance starts at $15/month for real-time caching
AnalyticDB: Flexible pay-as-you-go pricing based on compute usage
Total estimated cost: $30-50/month for a professional setup

Conclusion

You’ve now built a production-ready, multi-currency Forex portfolio dashboard that provides real-time insights into your trading performance. By leveraging Streamlit’s simplicity with Alibaba Cloud’s enterprise infrastructure, you have a scalable solution that grows with your trading needs.

The combination of OSS for durable storage, Tair for blazing-fast caching, and AnalyticDB for deep analytics gives you institutional-grade capabilities at a fraction of the cost. Start tracking your portfolio today and make data-driven trading decisions with confidence!

Building a Real-Time Forex Price Alert System with Python and Telegram

Introduction

In today’s fast-moving Forex market, timing is everything. Missing a price movement by even a few minutes can mean the difference between profit and loss. That’s why having a real-time price alert system is crucial for serious Forex traders. In this tutorial, we’ll build a powerful price monitoring system using Python and Telegram that runs on Alibaba Cloud’s serverless infrastructure, ensuring 24/7 uptime without the hassle of managing servers.

Why Build a Real-Time Forex Alert System?

Manual price monitoring is exhausting and inefficient. A good alert system provides:

Instant notifications when your target prices are reached
24/7 monitoring without human intervention
Multi-currency tracking for your entire portfolio
Cost-effective operation using serverless computing
Scalability to handle multiple currency pairs simultaneously

Architecture Overview: Leveraging Alibaba Cloud

Our system uses three key Alibaba Cloud services:

1. Function Compute – Serverless computing platform that runs our Python code without managing servers
2. TSDB (Time Series Database) – Optimized for storing and querying time-stamped Forex price data
3. CloudMonitor – Provides monitoring and alerting capabilities

This serverless architecture means you only pay for actual execution time, making it extremely cost-effective for retail traders.

Prerequisites

Before we begin, you’ll need:

• Python 3.8 or higher installed
• Alibaba Cloud account (free tier available)
• Telegram account and bot token
• Basic understanding of Python and APIs

Step 1: Setting Up Your Telegram Bot

First, let’s create a Telegram bot that will send us price alerts:

1. Open Telegram and search for @BotFather
2. Send /newbot command
3. Follow the prompts to name your bot
4. Save the API token provided

Here’s a Python script to test your Telegram bot:

import requests

def send_telegram_message(bot_token, chat_id, message):
    """
    Send a message via Telegram Bot API
    """
    url = f"https://api.telegram.org/bot{bot_token}/sendMessage"
    
    payload = {
        'chat_id': chat_id,
        'text': message,
        'parse_mode': 'HTML'
    }
    
    try:
        response = requests.post(url, json=payload)
        return response.json()
    except Exception as e:
        print(f"Error sending message: {e}")
        return None

# Test your bot
BOT_TOKEN = 'your_bot_token_here'
CHAT_ID = 'your_chat_id_here'

send_telegram_message(
    BOT_TOKEN, 
    CHAT_ID, 
    "<b>Alert System Test</b>\n\nYour Forex alert bot is ready!"
)

Step 2: Fetching Real-Time Forex Data

We’ll use a Forex API to get real-time exchange rates. Here’s our price monitoring function:

import requests
import json
from datetime import datetime

class ForexMonitor:
    def __init__(self, api_key):
        self.api_key = api_key
        self.base_url = "https://www.alphavantage.co/query"
    
    def get_exchange_rate(self, from_currency, to_currency):
        """
        Fetch current exchange rate for a currency pair
        """
        params = {
            'function': 'CURRENCY_EXCHANGE_RATE',
            'from_currency': from_currency,
            'to_currency': to_currency,
            'apikey': self.api_key
        }
        
        try:
            response = requests.get(self.base_url, params=params)
            data = response.json()
            
            rate_data = data['Realtime Currency Exchange Rate']
            
            return {
                'pair': f"{from_currency}/{to_currency}",
                'rate': float(rate_data['5. Exchange Rate']),
                'timestamp': rate_data['6. Last Refreshed'],
                'bid': float(rate_data['8. Bid Price']),
                'ask': float(rate_data['9. Ask Price'])
            }
        except Exception as e:
            print(f"Error fetching data: {e}")
            return None
    
    def check_price_threshold(self, current_rate, target_price, alert_type):
        """
        Check if price has crossed threshold
        alert_type: 'above' or 'below'
        """
        if alert_type == 'above':
            return current_rate >= target_price
        elif alert_type == 'below':
            return current_rate <= target_price
        return False

# Example usage
monitor = ForexMonitor('YOUR_API_KEY')
data = monitor.get_exchange_rate('EUR', 'USD')
print(f"EUR/USD: {data['rate']}")

Step 3: Deploying to Alibaba Cloud Function Compute

Alibaba Cloud Function Compute allows us to run our monitoring code serverlessly. Here’s our complete alert function:

import json
import requests
from aliyunsdkcore.client import AcsClient
from aliyunsdkcore.request import CommonRequest

def handler(event, context):
    """
    Main function handler for Alibaba Cloud Function Compute
    This function runs every 5 minutes via scheduled trigger
    """
    # Configuration
    BOT_TOKEN = context.credentials.access_key_id  # Store in environment
    CHAT_ID = context.credentials.access_key_secret
    
    # Define watchlist with target prices
    watchlist = [
        {'pair': 'EUR/USD', 'target': 1.0850, 'type': 'above'},
        {'pair': 'GBP/USD', 'target': 1.2600, 'type': 'below'},
        {'pair': 'USD/JPY', 'target': 149.50, 'type': 'above'}
    ]
    
    # Check each currency pair
    for watch in watchlist:
        from_curr, to_curr = watch['pair'].split('/')
        
        # Fetch current rate
        monitor = ForexMonitor('YOUR_API_KEY')
        data = monitor.get_exchange_rate(from_curr, to_curr)
        
        if data:
            # Check threshold
            triggered = monitor.check_price_threshold(
                data['rate'], 
                watch['target'], 
                watch['type']
            )
            
            if triggered:
                # Send alert
                message = f"""
<b>🚨 FOREX PRICE ALERT</b>

Pair: {data['pair']}
Current Rate: {data['rate']}
Target: {watch['target']}
Alert Type: {watch['type'].upper()}

Bid: {data['bid']}
Ask: {data['ask']}
Time: {data['timestamp']}
"""
                send_telegram_message(BOT_TOKEN, CHAT_ID, message)
                
                # Store in TSDB for historical analysis
                store_to_tsdb(data)
    
    return {
        'statusCode': 200,
        'body': json.dumps('Monitoring completed')
    }

def send_telegram_message(bot_token, chat_id, message):
    """Send alert via Telegram"""
    url = f"https://api.telegram.org/bot{bot_token}/sendMessage"
    requests.post(url, json={'chat_id': chat_id, 'text': message, 'parse_mode': 'HTML'})

def store_to_tsdb(data):
    """Store price data in Alibaba Cloud TSDB for trend analysis"""
    # Implementation for TSDB connection
    pass

Step 4: Storing Data in Alibaba Cloud TSDB

Time Series Database (TSDB) is perfect for Forex data. Here’s how to integrate it:

from aliyun.log import LogClient
import time

class TSDBHandler:
    def __init__(self, endpoint, access_key_id, access_key_secret):
        self.endpoint = endpoint
        self.access_key_id = access_key_id
        self.access_key_secret = access_key_secret
    
    def write_forex_data(self, currency_pair, rate, timestamp):
        """
        Write Forex price to TSDB
        """
        metric_data = {
            'metric': 'forex.exchange.rate',
            'timestamp': int(time.time()),
            'value': rate,
            'tags': {
                'pair': currency_pair,
                'source': 'alphavantage'
            }
        }
        
        # Write to TSDB
        # Implementation depends on TSDB SDK
        print(f"Stored: {currency_pair} @ {rate}")
        return True
    
    def query_historical_data(self, currency_pair, start_time, end_time):
        """
        Query historical price data for analysis
        """
        # Query TSDB for trends
        pass

Step 5: Setting Up Scheduled Monitoring

Configure Function Compute to run every 5 minutes:

1. Log into Alibaba Cloud Console
2. Navigate to Function Compute
3. Create a new function with Python 3.9 runtime
4. Upload your code as a ZIP file
5. Add a Time Trigger: cron expression `0 */5 * * * *`
6. Configure environment variables for API keys

Advanced Features to Add

Once your basic system is running, consider these enhancements:

Multiple Alert Conditions: Support percentage changes, not just absolute prices
Historical Charts: Use TSDB data to generate price charts sent via Telegram
Risk Management: Calculate position sizes and stop-loss levels
Backtesting: Test your alert strategies against historical data
Multi-User Support: Allow multiple traders to subscribe to alerts

Cost Optimization on Alibaba Cloud

The serverless approach is extremely cost-effective:

• Function Compute: Free tier includes 1 million invocations/month
• TSDB: Pay only for storage and queries
• CloudMonitor: Basic monitoring is free
• Estimated monthly cost: $5-15 for moderate usage

Conclusion

You’ve now built a professional-grade real-time Forex price alert system that runs reliably on Alibaba Cloud’s serverless infrastructure. This system monitors currency pairs 24/7, sends instant Telegram notifications when price thresholds are met, and stores historical data for analysis – all without managing any servers.

The combination of Python’s simplicity, Telegram’s instant messaging, and Alibaba Cloud’s powerful serverless platform creates a robust solution that scales with your trading needs. Start with a few currency pairs, refine your thresholds, and gradually expand your monitoring capabilities.

Remember to implement proper error handling, secure your API keys, and regularly test your alerts to ensure they’re working correctly. Happy trading!